Chapter 11. Inequalities

Exercise 11

Solution 1:

In ∆ ABC,

$$AB = AC[Given]$$

$$\angle B = 70^{\circ} [Given]$$

$$\Rightarrow$$
 \angle ACB = 70° (i)

Now,

$$\Rightarrow$$
 700 + \angle ACD = 1800

In A ACD.

$$\angle$$
 CAD + \angle ACD + \angle D = 180⁰

$$\Rightarrow$$
 \angle CAD + 110⁰ + \angle D = 180⁰ [From (ii)]

$$\Rightarrow$$
 \angle CAD + \angle D = 70°

But
$$\angle D = 40^{\circ}$$
 [Given]

$$\Rightarrow$$
 \angle CAD + 40⁰= 70⁰

$$\Rightarrow$$
 \angle CAD = 30⁰....(iii)

In ∆ ACD,

$$\angle$$
 CAD = 30° [From (iii)]

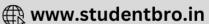
$$\angle D = 40^{\circ}$$
 [Given]

[Greater angle has greater side opposite to it]

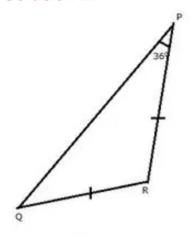
Also,

$$AB = AC[Given]$$

Therefore, AB > CD.



Solution 2:



In A PQR,

QR = PR[Given]

∴ ∠ P = ∠ Q[angles opposite to equal sides are equal]

 $\angle P = 36^{\circ}$ [Given]

$$\Rightarrow \angle Q = 36^{\circ}$$

In Δ PQR,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

$$\Rightarrow$$
36⁰ + 36⁰ + \angle R = 180⁰

$$\Rightarrow \angle R + 72^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle R = 108^{\circ}$$

Now.

$$\angle R = 108^{\circ}$$

$$\angle P = 36^{\circ}$$

$$\angle Q = 36^{\circ}$$

Since \angle R is the greatest, therefore, PQ is the largest side.

Solution 3:

The sum of any two sides of the triangle is always greater than third side of the triangle.

Third side < 13 + 8 = 21 cm.

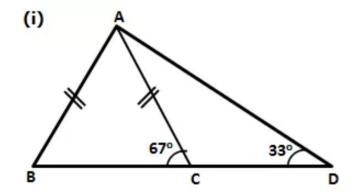
The difference between any two sides of the triangle is always less than the third side of the triangle.

Third side > 13 - 8 = 5 cm.

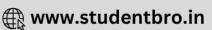
Therefore, the length of the third side is between 5 cm and 9 cm, respectively.

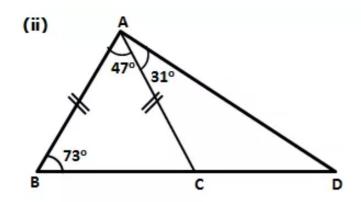
The value of a = 5 cm and b = 21 cm.

Solution 4:



```
In ∆ABC,
AB = AC
⇒∠ABC = ∠ACB (angles opposite to equal sides are equal)
⇒ ∠ABC = ∠ACB = 67°
\Rightarrow \angleBAC = 180° - \angleABC - \angleACB (angle sum property)
⇒∠BAC = 180° - 67° - 67° = 46°
Sin ce ∠BAC < ∠ABC, we have
BC < AC
            ....(1)
Now, \angle ACD = 180^{\circ} - \angle ACB
                                (linear pair)
\Rightarrow \angleACD = 180° - 67° = 113°
Thus, in ∆ACD,
ZCAD = 180° - ZACD - ZADC
\Rightarrow \angleCAD = 180° - 113° - 33° = 34°
Since ∠ADC < ∠CAD, we have
AC < CD ....(2)
From (1) and (2), we have
BC < AC < CD
```



In ∆ABC,

Now,
$$\angle$$
ACB = 180° - \angle ABC - \angle BAC

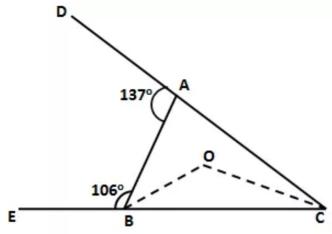
Now, in ∆ACD,

Since \angle ADC < \angle CAD, we have

From (1) and (2), we have

BC < AC < CD

Solution 5:



∠BAC =
$$180^{\circ}$$
 - ∠BAD = 180° - 137° = 43°
∠ABC = 180 - ∠ABE = 180° - 106° = 74°
Thus, in △ABC,
∠ACB = 180° - ∠BAC - ∠ABC
⇒ ∠ACB = 180° - 43° - 74° = 63°
Now, ∠ABC = ∠OBC + ∠ABO
⇒ ∠ABC = 2 ∠OBC (OB is biosector of ∠ABC)
⇒ 74° = 2 ∠OBC
⇒ ∠OBC = 37°
Similarly,
∠ACB = ∠OCB + ∠ACO
⇒ ∠ACB = 2 ∠OCB (OC is bisector of ∠ACB)
⇒ 63° = 2 ∠OCB

Now, in ΔBOC,

 $\angle BOC = 180^{\circ} - \angle OBC - \angle OCB$

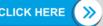
 \Rightarrow \angle BOC = 180° - 37° - 31.5°

⇒∠BOC = 111.5°

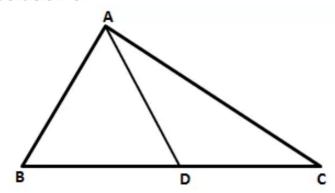
⇒ ∠OCB = 31.5°

Since, $\angle BOC > \angle OBC > \angle OCB$, we have

BC > OC > OB

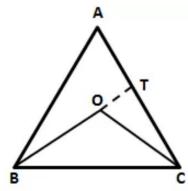


Solution 6:



AD > AC (given) $\Rightarrow \angle C > \angle ADC$ (1) Now, $\angle ADC > \angle B + \angle BAC$ (Exterior Angle Property) $\Rightarrow \angle ADC > \angle B$ (2) From (1) and (2), we have $\angle C > \angle ADC > \angle B$ $\Rightarrow \angle C > \angle B$ $\Rightarrow AB > AC$

Solution 7:



Construction: Produce BO to meet AC at T.

In ∆ABT,

AB + AT > BT (Sum of two sides of a Δ is greater than third side)

 \Rightarrow AB + AT > BO + OT(1)

Also, in ∆OCT,

OT + TC > OC(2)

Adding (1) and (2), we have

AB + AT + OT + TC > BO + OT + OC

 \Rightarrow AB + AT + TC > BO + OC

 \Rightarrow AB + AC > OB + OC

 \Rightarrow OB + OC < AB + AC

Solution 8:

$$\angle$$
B+ \angle BEC+ \angle BCE = 180⁰

$$\angle B = 65^{\circ}$$
 [Given]

$$\Rightarrow$$
650 + 900 + \angle BCE = 1800

$$\Rightarrow$$
 \angle BCE = 180° - 155°

$$\Rightarrow \angle BCE = 25^{\circ} = \angle DCF \dots (i)$$

$$\angle$$
 DCF + \angle FDC + \angle CFD = 180⁰

$$\angle$$
 DCF = 25⁰ [From (i)]

$$\Rightarrow$$
25⁰ + 90⁰ + \angle CFD = 180⁰

$$\Rightarrow$$
 \angle CFD = $180^{\circ} - 115^{\circ}$

Now,
$$\angle$$
 AFC + \angle CFD = 180° [AFD is a straight line]

$$\Rightarrow$$
 \angle AFC + 65⁰ = 180⁰

In A ACE,

$$\angle$$
 ACE + \angle CEA + \angle BAC = 180⁰

$$\angle$$
 BAC = 60° [Given]

$$\Rightarrow$$
 \angle ACE + 90⁰ + 60⁰ = 180⁰

$$\Rightarrow$$
 \angle ACE = 180° - 150°

$$\Rightarrow$$
 \angle ACE = 30° (iv)

In ∆ AFC,

$$\angle$$
 AFC + \angle ACF + \angle FAC = 180°

$$\angle$$
 ACF = 30° [From (iv)]

$$\Rightarrow$$
115⁰ + 30⁰ + \angle FAC = 180⁰

$$\Rightarrow$$
 \angle FAC = 180° - 145°

$$\Rightarrow \angle FAC = 35^0 \dots (v)$$

In ∆ AFC,

$$\angle$$
 FAC = 35° [From (v)]

$$\angle$$
 ACF = 30° [From (iv)]

$$\Rightarrow$$
 CF > AF

In ∆ CDF,

$$\angle$$
 DCF = 25⁰[From (i)]

$$\angle$$
 CFD = 65⁰[From (ii)]

Solution 9:

$$\angle ACB = 74^{\circ}$$
....(i)[Given]

$$\Rightarrow$$
74⁰ + \angle ACD = 180⁰

In ∆ ACD,

$$\angle ACD + \angle ADC + \angle CAD = 180^{\circ}$$

$$\Rightarrow$$
106⁰ + \angle CAD + \angle CAD = 180⁰[From (ii)]

$$\Rightarrow$$
2 \angle CAD = 74⁰

$$\Rightarrow$$
 \angle CAD = 37⁰ = \angle ADC....(iii)

Now.

$$\angle$$
 BAC + \angle CAD = 1100

$$\angle$$
 BAC + 37 $^{\circ}$ = 110 $^{\circ}$

$$\angle$$
 BAC = 73^0(iv)

In ∆ ABC,

$$\angle$$
B+ \angle BAC+ \angle ACB = 180 $^{\circ}$

$$\Rightarrow$$
 \angle B + 73⁰ + 74⁰ = 180⁰[From (i) and (iv)]

$$\Rightarrow$$
 \angle B + 147⁰ = 180⁰

$$\Rightarrow \angle B = 33^0 \dots (v)$$

$$\therefore \angle BAC > \angle B$$
 [From (iv) and (v)]

$$\Rightarrow$$
 BC > AC

But,

$$AC = CD$$
 [Given]

⇒BC > CD

Solution 10:

$$\angle ADC = 90^{\circ}[Given]$$

$$90^{\circ} + \angle ADB = 180^{\circ}$$

$$\angle ADB = 90^{\circ}$$
....(i)

In ∆ ADB,

$$\angle ADB = 90^{\circ} [From (i)]$$

$$\therefore \angle B + \angle BAD = 90^{\circ}$$

Therefore, \angle B and \angle BAD are both acute, that is less than 90°.

:. AB > BD(ii)[Side opposite 900 angle is greater than

side opposite acute angle]

(ii) In ∆ADC,

$$\angle ADB = 90^{\circ}$$

$$\therefore \angle C + \angle DAC = 90^{\circ}$$

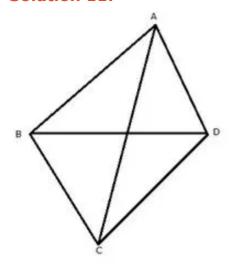
Therefore, \angle C and \angle DAC are both acute, that is less than 90°.

:: AC > CD(iii)[Side opposite 900 angle is greater than

side opposite acute angle]

Adding (ii) and (iii)

Solution 11:



Const: Join AC and BD.

(i) In ∆ ABC,

AB + BC > AC....(i)[Sum of two sides is greater than the

third side]

In ∆ ACD,

AC + CD > DA....(ii)[Sum of two sides is greater than the

third side]

Adding (i) and (ii)

AB+BC+AC+CD > AC+DA

AB+BC+CD > AC+DA-AC

AB + BC + CD > DA(iii)

(ii)In ∆ ACD,

CD + DA > AC....(iv)[Sum of two sides is greater than the

third side]

Adding (i) and (iv)

AB+BC+CD+DA > AC+AC

AB+BC+CD+DA > 2AC

(iii) In ∆ ABD,

AB + DA > BD....(v)[Sum of two sides is greater than the

third side]

In ∆ BCD,

BC + CD > BD(vi)[Sum of two sides is greater than the

third side]

Adding (v) and (vi)

AB + DA + BC + CD > BD + BD

AB + DA + BC + CD > 2BD

Solution 12:

(i) In ∆ ABC,

AB = BC = CA[ABC is an equilateral triangle]

$$\therefore \angle A = \angle B = \angle C$$

$$\therefore \angle A = \angle B = \angle C = \frac{180^{\circ}}{3}$$

$$\Rightarrow$$
 \angle A = \angle B = \angle C = 60°

In ∆ ABP,

$$\angle A = 60^{\circ}$$

$$\Rightarrow$$
 BP > PA

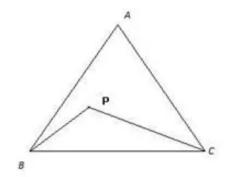
[Side opposite to greater side is greater]

(ii) In ∆BPC,

$$\angle C = 60^{\circ}$$

[Side opposite to greater side is greater]

Solution 13:



Let $\angle PBC = x$ and $\angle PCB = y$

then,

$$\angle$$
 BPC = 180° - $(x + y)$ (i)

Let
$$\angle$$
 ABP = a and \angle ACP = b

then,

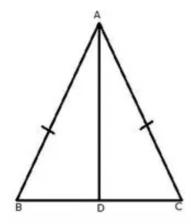
$$\angle$$
 BAC = 180⁰ - (x + a) - (y + b)

$$\Rightarrow \angle BAC = 180^{\circ} - (x + y) - (a + b)$$

$$\Rightarrow$$
 \angle BAC = \angle BPC - (a + b)

$$\Rightarrow$$
 \angle BPC = \angle BAC + (a + b)

Solution 14:



We know that exterior angle of a triangle is always greater than each of the interior opposite angles.

∴ In <u>A</u> ABD,

∠ADC > ∠B.....(i)

In ∆ ABC.

AB = AC

:. ∠B = ∠C....(ii)

From (i) and (ii)

ZADC > ZC

(i) In ∆ ADC,

∠ADC > ∠C

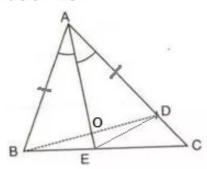
:: AC > AD(iii) [side opposite to greater angle is greater]

(ii) In ∆ABC,

AB = AC

⇒AB > AD[From (iii)]

Solution 15:



Const: Join ED.

In △ AOB and △ AOD,

AB = AD[Given]

AO = AO[Common]

 \angle BAO = \angle DAO[AO is bisector of \angle A]

∴ ΔAOB ≅ ΔAOD [SAS criterion]

Hence,

BO = OD(i)[cpct]

∠ AOB = ∠ AOD(ii)[cpct]

 $\angle ABO = \angle ADO \Rightarrow \angle ABD = \angle ADB \dots (iii)[cpct]$

Now,

∠ AOB = ∠ DOE[Vertically opposite angles]

∠ AOD = ∠ BOE[Vertically opposite angles]

 $\Rightarrow \angle BOE = \angle DOE(iv)[From (ii)]$

(i) In ∆ BOE and ∆ DOE,

BO = CD[From(i)]

OE = OE[Common]

 \angle BOE = \angle DOE[From (iv)]

∴ ΔBOE ≅ ΔDOE [SAS criterion]

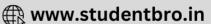
Hence, BE = DE[cpct]

(ii) In ∆BCD,

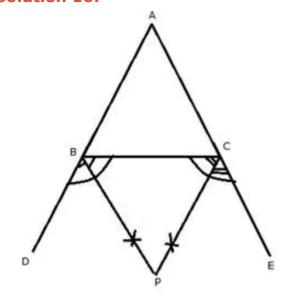
 \angle ADB = \angle C + \angle CBD[Ext. angle = sum of opp. int. angles]

⇒∠ADB > ∠C

 \Rightarrow \angle ABD > \angle C[From (iii)]



Solution 16:



In ∆ ABC,

AB > AC.

⇒∠ABC < ∠ACB

: 1800 - ∠ ABC > 1800 - ∠ ACB

$$\Rightarrow \frac{180^{0} - \angle ABC}{2} > \frac{180^{0} - \angle ACB}{2}$$

$$\Rightarrow$$
 90° - $\frac{1}{2}$ \angle ABC > 90° - $\frac{1}{2}$ \angle ACB

 \Rightarrow \angle CBP > \angle BCP [BP is bisector of \angle CBD

and CP is bisector of ∠BCE]

⇒PC > PB

[side opposite to greater angle is greater]

Solution 17:

Since AB is the largest side and BC is the smallest side of the triangle ABC

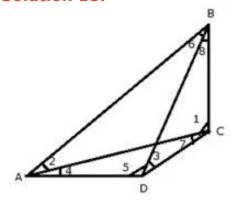
$$AB > AC > BC$$

$$\Rightarrow 180 - z > 180 - y > 180 - x$$

$$\Rightarrow -z > -y > -x$$

$$\Rightarrow z < y < x$$

Solution 18:



In the quad. ABCD,

Since AB is the longest side and DC is the shortest side.

(i)
$$\angle$$
 1 > \angle 2[AB > BC]

$$\angle$$
7 > \angle 4[AD > DC]

$$\angle 3 > \angle 8[BC > CD]$$

$$\Rightarrow \angle D > \angle B$$

Solution 19:

(i) Since AB > AC

$$\Rightarrow$$
 180° - z > 180° - y

$$\Rightarrow -z > -y$$

$$\Rightarrow$$
 z < y.....(i)

Also since AC > BC

$$\Rightarrow$$
 180° - y > 180° - x

$$\Rightarrow$$
 $-y > -x$

From (i) and (ii)

(ii) y > x > z[Given]

Taking y > x

$$\Rightarrow$$
 (180° - \angle ABC) > (180° - \angle BAC)

$$\Rightarrow$$
 AC < BC.....(i)

Again taking x > z

$$\Rightarrow$$
 (180° - \angle BAC) > (180° - \angle ACB)

From (i) and (ii)

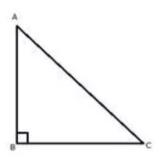
Ac < BC < AB

Writing in descending order

AB > BC > AC

Solution 20:

(i)



$$\therefore \angle B = 90^{\circ}$$
 [Given]

$$\angle A + \angle B + \angle C = 180^{\circ}$$

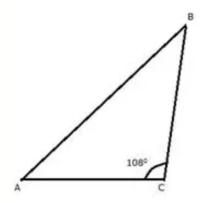
$$\Rightarrow$$
 \angle A + \angle C = 90°

Hence, $\angle B > \angle A \Rightarrow AC > BC$

Similarly, $\angle B > \angle C \Rightarrow AC > AB$

Hence, hypotenuse is the greatest side.

(ii)



$$\Rightarrow$$
 \angle A + \angle B + 108° = 180°

$$\Rightarrow \angle A + \angle B = 72^{\circ}$$

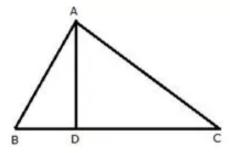
$$\Rightarrow \angle A < 72^{\circ}$$
 and $\angle B < 72^{\circ}$

Hence, ∠ ACB > ∠ A ⇒ AB > BC

Similarly, ∠ ACB > ∠ B ⇒AB > AC

Therefore, AB is the largest side.

Solution 21:

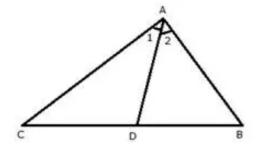


In ∆ ABD,

In ∆ ACD,

Adding (i) and (ii)

Solution 22:



In ∆ ADC,

In ∆ ADB,

But AC > AB[Given]

$$\Rightarrow \angle B > \angle C$$

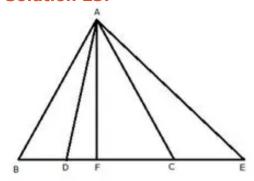
Also given, $\angle 2 = \angle 1[AD \text{ is bisector of } \angle A]$

$$\Rightarrow \angle 2 + \angle B > \angle 1 + \angle C \dots (iii)$$

From (i), (ii) and (iii)

⇒∠ADC > ∠ADB

Solution 23:



We know that the bisector of the angle at the vertex of an isosceles triangle bisects the base at right angle.

Using Pythagoras theorem in \triangle AFB,

$$AB^2 = AF^2 + BF^2$$
....(i)

In ∆ AFD,

$$AD^2 = AF^2 + DF^2$$
....(ii)

We know ABC is isosceles triangle and AB = AC

$$AC^2 = AF^2 + BF^2$$
.....(iii)[From (i)]

Subtracting (ii) from (iii)

$$AC^2 - AD^2 = AF^2 + BF^2 - AF^2 - DF^2$$

$$AC^2 - AD^2 = BF^2 - DF^2$$

Let 2DF = BF

$$AC^2 - AD^2 = (2DF)^2 - DF^2$$

$$AC^2 - AD^2 = 4DF^2 - DF^2$$

$$AC^2 = AD^2 + 3DF^2$$

$$\Rightarrow AC^2 > AD^2$$

Similarly, AE > AC and AE > AD.

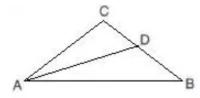
Solution 24:

The sum of any two sides of the triangle is always greater than the third side of the triangle.

In
$$\triangle CEB$$
,
 $CE + EB > BC$
 $\Rightarrow DE + EB > BC$ $[CE = DE]$
 $\Rightarrow DB > BC$(i)
In $\triangle ADB$,
 $AD + AB > BD$
 $\Rightarrow AD + AB > BC$ $[from(i)]$
 $\Rightarrow AD + AB > BC$

Solution 25:

 \Rightarrow AB > AD



Given that,
$$AB > AC$$

$$\Rightarrow \angle C > \angle B......(i)$$
Also in $\triangle ADC$

$$\angle ADB = \angle DAC + \angle C$$
 [Exterior angle]
$$\Rightarrow \angle ADB > \angle C$$

$$\Rightarrow \angle ADB > \angle C > \angle B$$
 [From(i)]
$$\Rightarrow \angle ADB > \angle B$$

